Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
PLoS One ; 19(4): e0291840, 2024.
Article in English | MEDLINE | ID: mdl-38568915

ABSTRACT

BACKGROUND: This study examined the correlation of classroom ventilation (air exchanges per hour (ACH)) and exposure to CO2 ≥1,000 ppm with the incidence of SARS-CoV-2 over a 20-month period in a specialized school for students with intellectual and developmental disabilities (IDD). These students were at a higher risk of respiratory infection from SARS-CoV-2 due to challenges in tolerating mitigation measures (e.g. masking). One in-school measure proposed to help mitigate the risk of SARS-CoV-2 infection in schools is increased ventilation. METHODS: We established a community-engaged research partnership between the University of Rochester and the Mary Cariola Center school for students with IDD. Ambient CO2 levels were measured in 100 school rooms, and air changes per hour (ACH) were calculated. The number of SARS-CoV-2 cases for each room was collected over 20 months. RESULTS: 97% of rooms had an estimated ACH ≤4.0, with 7% having CO2 levels ≥2,000 ppm for up to 3 hours per school day. A statistically significant correlation was found between the time that a room had CO2 levels ≥1,000 ppm and SARS-CoV-2 PCR tests normalized to room occupancy, accounting for 43% of the variance. No statistically significant correlation was found for room ACH and per-room SARS-CoV-2 cases. Rooms with ventilation systems using MERV-13 filters had lower SARS-CoV-2-positive PCR counts. These findings led to ongoing efforts to upgrade the ventilation systems in this community-engaged research project. CONCLUSIONS: There was a statistically significant correlation between the total time of room CO2 concentrations ≥1,000 and SARS-CoV-2 cases in an IDD school. Merv-13 filters appear to decrease the incidence of SARS-CoV-2 infection. This research partnership identified areas for improving in-school ventilation.


Subject(s)
COVID-19 , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Carbon Dioxide/analysis , Developmental Disabilities/epidemiology , Schools , Students , Ventilation
2.
bioRxiv ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38328169

ABSTRACT

Age-related reductions in cognitive flexibility may limit modulation of control processes during systematic increases to cognitive-motor demands, exacerbating dual-task costs. In this study, behavioral and neurophysiologic changes to proactive and reactive control during progressive cognitive-motor demands were compared across older and younger adults to explore the basis for age-differences in cognitive-motor interference (CMI). 19 younger (19 - 29 years old, mean age = 22.84 +/- 2.75 years, 6 male, 13 female) and 18 older (60 - 77 years old, mean age = 67.89 +/- 4.60 years, 9 male, 9 female) healthy adults completed cued task-switching while alternating between sitting and walking on a treadmill. Gait kinematics, task performance measures, and brain activity were recorded using electroencephalography (EEG) based Mobile Brain/Body Imaging (MoBI). Response accuracy on easier trial types improved in younger, but not older adults when they walked while performing the cognitive task. As difficulty increased, walking provoked accuracy costs in older, but not younger adults. Both groups registered faster responses and reduced gait variability during dual-task walking. Older adults exhibited lower amplitude modulations of proactive and reactive neural activity as cognitive-motor demands systematically increased, which may reflect reduced flexibility for progressive preparatory and reactive adjustments over behavioral control.

3.
medRxiv ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38343802

ABSTRACT

Background: In the search for objective tools to quantify neural function in Rett Syndrome (RTT), which are crucial in the evaluation of therapeutic efficacy in clinical trials, recordings of sensory-perceptual functioning using event-related potential (ERP) approaches have emerged as potentially powerful tools. Considerable work points to highly anomalous auditory evoked potentials (AEPs) in RTT. However, an assumption of the typical signal-averaging method used to derive these measures is "stationarity" of the underlying responses - i.e. neural responses to each input are highly stereotyped. An alternate possibility is that responses to repeated stimuli are highly variable in RTT. If so, this will significantly impact the validity of assumptions about underlying neural dysfunction, and likely lead to overestimation of underlying neuropathology. To assess this possibility, analyses at the single-trial level assessing signal-to-noise ratios (SNR), inter-trial variability (ITV) and inter-trial phase coherence (ITPC) are necessary. Methods: AEPs were recorded to simple 100Hz tones from 18 RTT and 27 age-matched controls (Ages: 6-22 years). We applied standard AEP averaging, as well as measures of neuronal reliability at the single-trial level (i.e. SNR, ITV, ITPC). To separate signal-carrying components from non-neural noise sources, we also applied a denoising source separation (DSS) algorithm and then repeated the reliability measures. Results: Substantially increased ITV, lower SNRs, and reduced ITPC were observed in auditory responses of RTT participants, supporting a "neural unreliability" account. Application of the DSS technique made it clear that non-neural noise sources contribute to overestimation of the extent of processing deficits in RTT. Post-DSS, ITV measures were substantially reduced, so much so that pre-DSS ITV differences between RTT and TD populations were no longer detected. In the case of SNR and ITPC, DSS substantially improved these estimates in the RTT population, but robust differences between RTT and TD were still fully evident. Conclusions: To accurately represent the degree of neural dysfunction in RTT using the ERP technique, a consideration of response reliability at the single-trial level is highly advised. Non-neural sources of noise lead to overestimation of the degree of pathological processing in RTT, and denoising source separation techniques during signal processing substantially ameliorate this issue.

4.
Res Sq ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352397

ABSTRACT

Background In the search for objective tools to quantify neural function in Rett Syndrome (RTT), which are crucial in the evaluation of therapeutic efficacy in clinical trials, recordings of sensory-perceptual functioning using event-related potential (ERP) approaches have emerged as potentially powerful tools. Considerable work points to highly anomalous auditory evoked potentials (AEPs) in RTT. However, an assumption of the typical signal-averaging method used to derive these measures is "stationarity" of the underlying responses - i.e. neural responses to each input are highly stereotyped. An alternate possibility is that responses to repeated stimuli are highly variable in RTT. If so, this will significantly impact the validity of assumptions about underlying neural dysfunction, and likely lead to overestimation of underlying neuropathology. To assess this possibility, analyses at the single-trial level assessing signal-to-noise ratios (SNR), inter-trial variability (ITV) and inter-trial phase coherence (ITPC) are necessary. Methods AEPs were recorded to simple 100Hz tones from 18 RTT and 27 age-matched controls (Ages: 6-22 years). We applied standard AEP averaging, as well as measures of neuronal reliability at the single-trial level (i.e. SNR, ITV, ITPC). To separate signal-carrying components from non-neural noise sources, we also applied a denoising source separation (DSS) algorithm and then repeated the reliability measures. Results Substantially increased ITV, lower SNRs, and reduced ITPC were observed in auditory responses of RTT participants, supporting a "neural unreliability" account. Application of the DSS technique made it clear that non-neural noise sources contribute to overestimation of the extent of processing deficits in RTT. Post-DSS, ITV measures were substantially reduced, so much so that pre-DSS ITV differences between RTT and TD populations were no longer detected. In the case of SNR and ITPC, DSS substantially improved these estimates in the RTT population, but robust differences between RTT and TD were still fully evident. Conclusions To accurately represent the degree of neural dysfunction in RTT using the ERP technique, a consideration of response reliability at the single-trial level is highly advised. Non-neural sources of noise lead to overestimation of the degree of pathological processing in RTT, and denoising source separation techniques during signal processing substantially ameliorate this issue.

5.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370797

ABSTRACT

Atypical reactivity to somatosensory inputs is common in autism spectrum disorder and carries considerable impact on downstream social communication and quality of life. While behavioral and survey work have established differences in the perception of somatosensory information, little has been done to elucidate the underlying neurophysiological processes that drive these characteristics. Here, we implemented a duration-based somatosensory mismatch negativity paradigm to examine the role of temporal sensitivity and sensory memory in the processing of vibrotactile information in autistic (n=30) and neurotypical (n=30) adults. To capture the variability in responses between groups across a range of duration discrepancies, we compared the electrophysiological responses to frequent standard vibrations (100 ms) and four infrequent deviant vibrations (115, 130, 145, and 160 ms). The same stimuli were used in a follow-up behavioral task to determine active detection of the infrequent vibrations. We found no differences between the two groups with regard to discrimination between standard and deviant vibrations, demonstrating comparable neurologic and behavioral temporal somatosensory perception. However, exploratory analyses yielded subtle differences in amplitude at the N1 and P220 time points. Together, these results indicate that the temporal mechanisms of somatosensory discrimination are conserved in adults on the autism spectrum, though more general somatosensory processing may be affected. We discuss these findings in the broader context of the MMN literature in autism, as well as the potential role of cortical maturity in somatosensory mechanisms.

6.
J Neurodev Disord ; 16(1): 3, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38183037

ABSTRACT

BACKGROUND: We interrogated auditory sensory memory capabilities in individuals with CLN3 disease (juvenile neuronal ceroid lipofuscinosis), specifically for the feature of "duration" processing. Given decrements in auditory processing abilities associated with later-stage CLN3 disease, we hypothesized that the duration-evoked mismatch negativity (MMN) of the event related potential (ERP) would be a marker of progressively atypical cortical processing in this population, with potential applicability as a brain-based biomarker in clinical trials. METHODS: We employed three stimulation rates (fast: 450 ms, medium: 900 ms, slow: 1800 ms), allowing for assessment of the sustainability of the auditory sensory memory trace. The robustness of MMN directly relates to the rate at which the regularly occurring stimulus stream is presented. As presentation rate slows, robustness of the sensory memory trace diminishes. By manipulating presentation rate, the strength of the sensory memory trace is parametrically varied, providing greater sensitivity to detect auditory cortical dysfunction. A secondary hypothesis was that duration-evoked MMN abnormalities in CLN3 disease would be more severe at slower presentation rates, resulting from greater demand on the sensory memory system. RESULTS: Data from individuals with CLN3 disease (N = 21; range 6-28 years of age) showed robust MMN responses (i.e., intact auditory sensory memory processes) at the medium stimulation rate. However, at the fastest rate, MMN was significantly reduced, and at the slowest rate, MMN was not detectable in CLN3 disease relative to neurotypical controls (N = 41; ages 6-26 years). CONCLUSIONS: Results reveal emerging insufficiencies in this critical auditory perceptual system in individuals with CLN3 disease.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Humans , Neuronal Ceroid-Lipofuscinoses/complications , Auditory Perception , Evoked Potentials, Auditory , Memory , Brain , Membrane Glycoproteins , Molecular Chaperones
7.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293016

ABSTRACT

Humans rely on predictive mechanisms during visual processing to efficiently resolve incomplete or ambiguous sensory signals. While initial low-level sensory data are conveyed by feedforward connections, feedback connections are believed to shape sensory processing through conveyance of statistical predictions based on prior exposure to stimulus configurations. Individuals with autism spectrum disorder (ASD) show biases in stimulus processing toward parts rather than wholes, suggesting their sensory processing may be less shaped by statistical predictions acquired through prior exposure to global stimulus properties. Investigations of illusory contour (IC) processing in neurotypical (NT) adults have established a well-tested marker of contour integration characterized by a robust modulation of the visually evoked potential (VEP) - the IC-effect - that occurs over lateral occipital scalp during the timeframe of the N1 component. Converging evidence strongly supports the notion that this IC-effect indexes a signal with significant feedback contributions. Using high-density VEPs, we compared the IC-effect in 6-17-year-old children with ASD (n=32) or NT development (n=53). Both groups of children generated an IC-effect that was equivalent in amplitude. However, the IC-effect notably onset 21ms later in ASD, even though timing of initial VEP afference was identical across groups. This suggests that feedforward information predominated during perceptual processing for 15% longer in ASD compared to NT children. This delay in the feedback dependent IC-effect, in the context of known developmental differences between feedforward and feedback fibers, suggests a potential pathophysiological mechanism of visual processing in ASD, whereby ongoing stimulus processing is less shaped by statistical prediction mechanisms.

8.
Neuroscience ; 536: 47-56, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37979841

ABSTRACT

Duration is an amodal feature common to all sensory experiences, but low-level processing of the temporal qualities of somatosensation remains poorly understood. The goal of the present study was to evaluate electrophysiological discrimination of parametric somatosensory stimuli to better understand how the brain processes the duration of tactile information. This research used a somatosensory mismatch negativity (sMMN) paradigm to evaluate electrophysiological sensitivity to differences in the duration of vibrotactile stimuli in healthy young adults. Specifically, a 100 ms standard vibration was presented 80% of the time while the remaining 20% of presentations were made up of deviant stimuli with one of the following durations: 115, 130, 145, or 160 ms. When a deviation from the anticipated tactile input is detected, the distinct electrophysiological signature of the sMMN is present. A companion behavioral task assessed individual thresholds for cognizant awareness of the standard and deviant vibrotactile stimuli. The results of the present study demonstrated a sMMN response when deviant stimuli were 130, 145, and 160 ms, but not when they were 115 ms. This suggests that on average the participants did not electrophysiologically discriminate between the 100 and 115 ms. Future work may apply this paradigm to better understand atypical tactile sensitivity in various clinical conditions.


Subject(s)
Brain , Electroencephalography , Young Adult , Humans , Electroencephalography/methods , Memory/physiology , Brain Mapping/methods , Acoustic Stimulation , Evoked Potentials, Auditory/physiology
9.
Front Integr Neurosci ; 17: 1232474, 2023.
Article in English | MEDLINE | ID: mdl-37869448

ABSTRACT

Background: Altered patterns of eye-movements during scene exploration, and atypical gaze preferences in social settings, have long been noted as features of the Autism phenotype. While these are typically attributed to differences in social engagement and interests (e.g., preferences for inanimate objects over face stimuli), there are also reports of differential saccade measures to non-social stimuli, raising the possibility that fundamental differences in visuo-sensorimotor processing may be at play. Here, we tested the plasticity of the eye-movement system using a classic saccade-adaptation paradigm to assess whether individuals with ASD make typical adjustments to their eye-movements in response to experimentally introduced errors. Saccade adaptation can be measured in infants as young as 10 months, raising the possibility that such measures could be useful as early neuro-markers of ASD risk. Methods: Saccade amplitudes were measured while children and adults with ASD (N = 41) and age-matched typically developing (TD) individuals (N = 68) made rapid eye-movements to peripherally presented targets. During adaptation trials, the target was relocated from 20-degrees to 15-degrees from fixation once a saccade to the original target location was initiated, a manipulation that leads to systematic reduction in saccade amplitudes in typical observers. Results: Neither children nor adults with ASD showed any differences relative to TD peers in their abilities to appropriately adapt saccades in the face of persistently introduced errors. Conclusion: Of the three studies to date of saccade adaptation in ASD, none have shown deficits in saccade adaptation that are sufficient to generalize to the whole or a subgroup of the ASD population. Unlike prior studies, we found no evidence for a slower adaptation rate during the early adaptation phase, and no of evidence greater variance of saccade amplitudes in ASD. In post hoc analysis, there was evidence for larger primary saccades to non-adapted targets, a finding requiring replication in future work.

10.
Neuroscience ; 532: 113-132, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37774910

ABSTRACT

This study elucidates the neural mechanisms underlying increasing cognitive load while walking by employing 2 versions of a response inhibition task, the '1-back' version and the more cognitively demanding '2-back' version. By using the Mobile Brain/Body Imaging (MoBI) modality, electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and task-related behavioral responses were collected while young adults (n = 61) performed either the 1-back or 2-back response inhibition task. Interestingly, increasing inhibitory difficulty from 1-back to 2-back during walking was not associated with any detectable costs in response accuracy, response speed, or gait consistency. However, the more difficult cognitive task was associated with distinct EEG component changes during both successful inhibitions (correct rejections) and successful executions (hits) of the motor response. During correct rejections, ERP changes were found over frontal regions, during latencies related to sensory gain control, conflict monitoring and working memory storage and processing. During hits, ERP changes were found over left-parietal regions during latencies related to orienting attention and subsequent selection and execution of the motor plan. The pattern of attenuation in walking-related EEG amplitude changes, during 2-back task performance, is thought to reflect more effortful recalibration of neural processes, a mechanism which might be a key driver of performance maintenance in the face of increased cognitive demands while walking. Overall, the present findings shed light on the extent of the neurocognitive capacity of young adults and may lead to a better understanding of how factors such as aging or neurological disorders could impinge on this capacity.


Subject(s)
Task Performance and Analysis , Walking , Young Adult , Humans , Walking/physiology , Gait/physiology , Electroencephalography/methods , Cognition/physiology
11.
medRxiv ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37732178

ABSTRACT

Background: This study examined the correlation of classroom ventilation (air exchanges per hour (ACH)) and exposure to CO2 ≥1,000 ppm with the incidence of SARS-CoV-2 over a 20-month period in a specialized school for students with intellectual and developmental disabilities (IDD). These students were at a higher risk of respiratory infection from SARS-CoV-2 due to challenges in tolerating mitigation measures (e.g. masking). One in-school measure proposed to help mitigate the risk of SARS-CoV-2 infection in schools is increased ventilation. Methods: We established a community-engaged research partnership between the University of Rochester and the Mary Cariola Center school for students with IDD. Ambient CO2 levels were measured in 100 school rooms, and air changes per hour (ACH) were calculated. The number of SARS-CoV-2 cases for each room was collected over 20 months. Results: 97% of rooms had an estimated ACH ≤4.0, with 7% having CO2 levels ≥2,000 ppm for up to 3 hours per school day. A statistically significant correlation was found between the time that a room had CO2 levels ≥1,000 ppm and SARS-CoV-2 PCR tests normalized to room occupancy, accounting for 43% of the variance. No statistically significant correlation was found for room ACH and per-room SARS-CoV-2 cases. Rooms with ventilation systems using MERV-13 filters had lower SARS-CoV-2-positive PCR counts. These findings led to ongoing efforts to upgrade the ventilation systems in this community-engaged research project. Conclusions: There was a statistically significant correlation between the total time of room CO2 concentrations ≥1,000 and SARS-CoV-2 cases in an IDD school. Merv-13 filters appear to decrease the incidence of SARS-CoV-2 infection. This research partnership identified areas for improving in-school ventilation.

12.
Res Sq ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37645970

ABSTRACT

Background: We interrogated auditory sensory memory capabilities in individuals with CLN3 disease (juvenile neuronal ceroid lipofuscinosis), specifically for the feature of "duration" processing, a critical cue in speech perception. Given decrements in speech and language skills associated with later-stage CLN3 disease, we hypothesized that the duration-evoked mismatch negativity (MMN) of the event related potential (ERP) would be a marker of progressively atypical cortical processing in this population, with potential applicability as a brain-based biomarker in clinical trials. Methods: We employed three stimulation rates (fast: 450 ms, medium: 900 ms, slow: 1800 ms), allowing for assessment of the sustainability of the auditory sensory memory trace. The robustness of MMN directly relates to the rate at which the regularly occurring stimulus stream is presented. As presentation rate slows, robustness of the sensory memory trace diminishes. By manipulating presentation rate, the strength of the sensory memory trace is parametrically varied, providing greater sensitivity to detect auditory cortical dysfunction. A secondary hypothesis was that duration-evoked MMN abnormalities in CLN3 disease would be more severe at slower presentation rates, resulting from greater demand on the sensory memory system. Results: Data from individuals with CLN3 disease (N=21; range 6-28 years of age) showed robust MMN responses (i.e., intact auditory sensory memory processes) at the medium stimulation rate. However, at the fastest rate, MMN was significantly reduced, and at the slowest rate, MMN was not detectable in CLN3 disease relative to neurotypical controls (N=41; ages 6-26 years). Conclusions: Results reveal emerging insufficiencies in this critical auditory perceptual system in individuals with CLN3 disease.

14.
Neuroimage ; 273: 120098, 2023 06.
Article in English | MEDLINE | ID: mdl-37037381

ABSTRACT

Combining walking with a demanding cognitive task is traditionally expected to elicit decrements in gait and/or cognitive task performance. However, it was recently shown that, in a cohort of young adults, most participants improved performance when walking was added to performance of a Go/NoGo response inhibition task. The present study aims to extend these previous findings to an older adult cohort, to investigate whether this improvement when dual-tasking is observed in healthy older adults. Mobile Brain/Body Imaging (MoBI) was used to record electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and behavioral responses in the Go/NoGo task, during sitting or walking on a treadmill, in 34 young adults and 37 older adults. Increased response accuracy during walking, independent of age, was found to correlate with slower responses to stimuli (r = 0.44) and with walking-related EEG amplitude modulations over frontocentral regions (r = 0.47) during the sensory gating (N1) and conflict monitoring (N2) stages of inhibition, and over left-lateralized prefrontal regions (r = 0.47) during the stage of inhibitory control implementation (P3). These neural activity changes are related to the cognitive component of inhibition, and they were interpreted as signatures of behavioral improvement during walking. On the other hand, aging, independent of response accuracy during walking, was found to correlate with slower treadmill walking speeds (r = -0.68) and attenuation in walking-related EEG amplitude modulations over left-dominant frontal (r = -0.44) and parietooccipital regions (r = 0.48) during the N2 stage, and over centroparietal regions (r = 0.48) during the P3 stage. These neural activity changes are related to the motor component of inhibition, and they were interpreted as signatures of aging. Older adults whose response accuracy 'paradoxically' improved during walking manifested neural signatures of both behavioral improvement and aging, suggesting that their flexibility in reallocating neural resources while walking might be maintained for the cognitive but not for the motor inhibitory component. These distinct neural signatures of aging and behavior can potentially be used to identify 'super-agers', or individuals at risk for cognitive decline due to aging or neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Young Adult , Humans , Aged , Walking/physiology , Gait/physiology , Brain/diagnostic imaging , Aging/physiology , Cognition/physiology
15.
J Neurosci ; 43(13): 2424-2438, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36859306

ABSTRACT

Individuals on the autism spectrum often exhibit atypicality in their sensory perception, but the neural underpinnings of these perceptual differences remain incompletely understood. One proposed mechanism is an imbalance in higher-order feedback re-entrant inputs to early sensory cortices during sensory perception, leading to increased propensity to focus on local object features over global context. We explored this theory by measuring visual evoked potentials during contour integration as considerable work has revealed that these processes are largely driven by feedback inputs from higher-order ventral visual stream regions. We tested the hypothesis that autistic individuals would have attenuated evoked responses to illusory contours compared with neurotypical controls. Electrophysiology was acquired while 29 autistic and 31 neurotypical children (7-17 years old, inclusive of both males and females) passively viewed a random series of Kanizsa figure stimuli, each consisting of four inducers that were aligned either at random rotational angles or such that contour integration would form an illusory square. Autistic children demonstrated attenuated automatic contour integration over lateral occipital regions relative to neurotypical controls. The data are discussed in terms of the role of predictive feedback processes on perception of global stimulus features and the notion that weakened "priors" may play a role in the visual processing anomalies seen in autism.SIGNIFICANCE STATEMENT Children on the autism spectrum differ from typically developing children in many aspects of their processing of sensory stimuli. One proposed mechanism for these differences is an imbalance in higher-order feedback to primary sensory regions, leading to an increased focus on local object features rather than global context. However, systematic investigation of these feedback mechanisms remains limited. Using EEG and a visual illusion paradigm that is highly dependent on intact feedback processing, we demonstrated significant disruptions to visual feedback processing in children with autism. This provides much needed experimental evidence that advances our understanding of the contribution of feedback processing to visual perception in autism spectrum disorder.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Illusions , Male , Female , Humans , Child , Adolescent , Evoked Potentials, Visual , Feedback, Sensory , Feedback , Visual Perception/physiology , Illusions/physiology
16.
Cereb Cortex ; 33(6): 2573-2592, 2023 03 10.
Article in English | MEDLINE | ID: mdl-35661873

ABSTRACT

INTRODUCTION: In young adults, pairing a cognitive task with walking can have different effects on gait and cognitive task performance. In some cases, performance clearly declines whereas in others compensatory mechanisms maintain performance. This study investigates the preliminary finding of behavioral improvement in Go/NoGo response inhibition task performance during walking compared with sitting, which was observed at the piloting stage. MATERIALS AND METHODS: Mobile brain/body imaging (MoBI) was used to record electroencephalographic (EEG) activity, 3-dimensional (3D) gait kinematics and behavioral responses in the cognitive task, during sitting or walking on a treadmill. RESULTS: In a cohort of 26 young adults, 14 participants improved in measures of cognitive task performance while walking compared with sitting. These participants exhibited walking-related EEG amplitude reductions over frontal scalp regions during key stages of inhibitory control (conflict monitoring, control implementation, and pre-motor stages), accompanied by reduced stride-to-stride variability and faster responses to stimuli compared with those who did not improve. In contrast, 12 participants who did not improve exhibited no EEG amplitude differences across physical condition. DISCUSSION: The neural activity changes associated with performance improvement during dual tasking hold promise as cognitive flexibility markers that can potentially help assess cognitive decline in aging and neurodegeneration.


Subject(s)
Gait , Walking , Humans , Young Adult , Walking/physiology , Gait/physiology , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Cognition/physiology
17.
Neuroimage ; 263: 119626, 2022 11.
Article in English | MEDLINE | ID: mdl-36103956

ABSTRACT

BACKGROUND: Children that experience a mild traumatic brain injury (mTBI) are at an increased risk of neural alterations that can deteriorate mental health. We test the hypothesis that mTBI is associated with psychopathology and that structural brain metrics (e.g., volume, area) meaningfully mediate the relation in an adolescent population. METHODS: We analyzed behavioral and brain MRI data from 11,876 children who participated in the Adolescent Brain Cognitive Development (ABCD) Study. Mixed-effects models were used to examine the longitudinal association between mTBI and mental health outcomes. Bayesian methods were used to investigate brain regions that are intermediate between mTBI and symptoms of poor mental health. RESULTS: There were 199 children with mTBI and 527 with possible mTBI across the three ABCD Study visits. There was a 7% (IRR = 1.07, 95% CI: 1.01, 1.13) and 15% (IRR = 1.16, 95% CI: 1.05, 1.26) increased risk of emotional or behavioral problems in children that experienced possible mTBI or mTBI, respectively. Possible mTBI was associated with a 17% (IRR: 1.17, 95% CI: 0.99, 1.40) increased risk of experiencing distress following a psychotic-like experience. We did not find any brain regions that meaningfully mediated the relationship between mTBI and mental health outcomes. Analysis of volumetric measures found that approximately 2% to 5% of the total effect of mTBI on mental health outcomes operated through total cortical volume. Image intensity measure analyses determined that approximately 2% to 5% of the total effect was mediated through the left-hemisphere of the dorsolateral prefrontal cortex. CONCLUSION: Results indicate an increased risk of emotional and behavioral problems in children that experienced possible mTBI or mTBI. Mediation analyses did not elucidate the mechanisms underlying the association between mTBI and mental health outcomes.


Subject(s)
Brain Concussion , Child , Humans , Adolescent , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Bayes Theorem , Dorsolateral Prefrontal Cortex , Outcome Assessment, Health Care , Cognition
18.
Neuroscience ; 502: 77-90, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35963584

ABSTRACT

Evidence from animal research, postmortem analyses, and magnetic resonance imaging (MRI) investigations indicate substantial morphological alteration in brain structure as a function of human immunodeficiency virus (HIV) or cocaine dependence (CD). Although previous research on HIV+ active cocaine users suggests the presence of deleterious morphological effects in excess of either condition alone, a yet unexplored question is whether there is a similar deleterious interaction in HIV+ individuals with CD who are currently abstinent. To this end, the combinatorial effects of HIV and CD history on regional brain volume, cortical thickness, and neurocognitive performance was examined across four groups of participants in an exploratory study: healthy controls (n = 34), HIV-negative individuals with a history of CD (n = 21), HIV+ individuals with no history of CD (n = 20), HIV+ individuals with a history of CD (n = 15). Our analyses revealed no statistical evidence of an interaction between both conditions on brain morphometry and neurocognitive performance. While descriptively, individuals with comorbid HIV and a history of CD exhibited the lowest neurocognitive performance scores, using Principle Component Analysis of neurocognitive testing data, HIV was identified as the primary driver of neurocognitive impairment. Higher caudate volume was evident in CD+ participants relative to CD- participants. Findings indicate no evidence of compounded differences in neurocognitive function or structural measures of brain integrity in HIV+ individuals in recovery from CD relative to individuals with only one condition.


Subject(s)
Cocaine-Related Disorders , Cocaine , HIV Infections , Humans , Cocaine-Related Disorders/diagnostic imaging , Cocaine-Related Disorders/psychology , Neuropsychological Tests , HIV Infections/complications , HIV Infections/diagnostic imaging , HIV Infections/pathology , Brain/pathology , Magnetic Resonance Imaging
19.
Neuroscience ; 501: 143-158, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35964833

ABSTRACT

During speech comprehension, the ongoing context of a sentence is used to predict sentence outcome by limiting subsequent word likelihood. Neurophysiologically, violations of context-dependent predictions result in amplitude modulations of the N400 event-related potential (ERP) component. While the N400 is widely used to measure semantic processing and integration, no publicly-available auditory stimulus set is available to standardize approaches across the field. Here, we developed an auditory stimulus set of 442 sentences that utilized the semantic anomaly paradigm, measured cloze probability for all stimuli, and was made for both children and adults. With 20 neurotypical adults, we validated that this set elicits robust N400's, as well as two additional semantically-related ERP components: the recognition potential (∼ 250 ms) and the late positivity component (∼ 600 ms). This stimulus set (https://doi.org/10.5061/dryad.9ghx3ffkg) and the 20 high-density (128-channel) electrophysiological datasets (https://doi.org/10.5061/dryad.6wwpzgmx4) are made publicly available to promote data sharing and reuse. Future studies that use this stimulus set to investigate sentential semantic comprehension in both control and clinical populations may benefit from the increased comparability and reproducibility within this field of research.


Subject(s)
Evoked Potentials , Solanum melongena , Adult , Child , Comprehension/physiology , Electroencephalography , Evoked Potentials/physiology , Female , Humans , Male , Reproducibility of Results , Semantics
20.
Mol Autism ; 13(1): 33, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35850696

ABSTRACT

BACKGROUND: Biological motion imparts rich information related to the movement, actions, intentions and affective state of others, which can provide foundational support for various aspects of social cognition and behavior. Given that atypical social communication and cognition are hallmark symptoms of autism spectrum disorder (ASD), many have theorized that a potential source of this deficit may lie in dysfunctional neural mechanisms of biological motion processing. Synthesis of existing literature provides some support for biological motion processing deficits in autism spectrum disorder, although high study heterogeneity and inconsistent findings complicate interpretation. Here, we attempted to reconcile some of this residual controversy by investigating a possible modulating role for attention in biological motion processing in ASD. METHODS: We employed high-density electroencephalographic recordings while participants observed point-light displays of upright, inverted and scrambled biological motion under two task conditions to explore spatiotemporal dynamics of intentional and unintentional biological motion processing in children and adolescents with ASD (n = 27), comparing them to a control cohort of neurotypical (NT) participants (n = 35). RESULTS: Behaviorally, ASD participants were able to discriminate biological motion with similar accuracy to NT controls. However, electrophysiologic investigation revealed reduced automatic selective processing of upright biologic versus scrambled motion stimuli in ASD relative to NT individuals, which was ameliorated when task demands required explicit attention to biological motion. Additionally, we observed distinctive patterns of covariance between visual potentials evoked by biological motion and functional social ability, such that Vineland Adaptive Behavior Scale-Socialization domain scores were differentially associated with biological motion processing in the N1 period in the ASD but not the NT group. LIMITATIONS: The cross-sectional design of this study does not allow us to definitively answer the question of whether developmental differences in attention to biological motion cause disruption in social communication, and the sample was limited to children with average or above cognitive ability. CONCLUSIONS: Together, these data suggest that individuals with ASD are able to discriminate, with explicit attention, biological from non-biological motion but demonstrate diminished automatic neural specificity for biological motion processing, which may have cascading implications for the development of higher-order social cognition.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adolescent , Child , Cross-Sectional Studies , Electroencephalography , Humans , Social Skills
SELECTION OF CITATIONS
SEARCH DETAIL
...